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Abstract: The broad use of two-photon microscopy has been enabled in part by Ti:Sapphire
femtosecond lasers, which offer a wavelength-tunable source of pulsed excitation. Action spectra
have thus been primarily reported for the tunable range of Ti:Sapphire lasers (∼700–1000 nm).
However, longer wavelengths offer deeper imaging in tissue via reduced scattering and spectral dips
in water absorption, and new generations of pulsed lasers offer wider tunable ranges. We present
the peak molecular brightness spectra for eight Alexa Fluor dyes between 700–1300 nm as a first-
order surrogate for action spectra measured with an unmodified commercial microscope, which
reveal overlapping long-wavelength excitation peaks with potential for multiplexed excitation. We
demonstrate simultaneous single-wavelength excitation of six spectrally overlapping fluorophores
using either short (∼790 nm) or long (∼1090 nm) wavelengths, and that the newly characterized
excitation peaks measured past 1000 nm offer improved photostability and enhanced fidelity of
linear spectral unmixing at depth compared to shorter wavelengths.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Multiphoton excited fluorescence, wherein a fluorophore is excited to a higher electronic energy
state by the simultaneous absorption of two or more photons, is one of the most broadly utilized
applications of nonlinear optics to biology [1,2]. Two-photon excitation (TPE) microscopy
provides several well-known advantages over conventional microscopy, including intrinsic optical
sectioning [3], reduced scattering and absorption of excitation light [4], and superior imaging at
depth [5]. TPE spectra frequently have multiple peaks whose features are partially determined
by vibronic transitions. Centrosymmetric or nearly-centrosymmetric molecules [6] exhibit
moderate broadening relative to single-photon excitation (or one-photon excitation, OPE) due to
parity selection rules [7]. This can be exploited to enhance simultaneous excitation of multiple
fluorophores (i.e. multiplexing), as demonstrated by the seminal work of Xu and colleagues
[8]. However, multiplexing TPE has been relatively underdeveloped since then, perhaps due
in part to the lack of commercial hyperspectral TPE microscopes until the past few years.
Recently, Bares et al. elegantly developed the use of multiple femtosecond lasers (three different
excitation wavelengths) in combination with angle-tuned spectral filters to image up to 10 different
spectrally overlapped fluorescent probes at depth in vivo [9]. Simultaneous excitation has also
been improved by employing wavelength mixing schemes, where pulse train synchronization of
multiple wavelengths creates additional virtual excitation energies [10].

In general, predicting optimal TPE wavelengths by simply doubling one-photon excitation
(OPE) spectra is not reliable due to nonlinear broadening and blue-shifting effects [11,12],
necessitating measurements of two-photon absorption (TPA) cross-sections. Collections of
measurements such as Makarov et al. [13] indicate that independent measurements of TPA
cross-sections can vary significantly. The peak molecular brightness has been introduced as a
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viable alternative measurement to the TPA cross-section [14–17]. Iyer et al. [16] thoroughly
investigated the use of two-photon fluorescence correlation spectroscopy (FCS) to investigate
the molecular brightness ε. At low laser powers, ε has a squared dependence on the excitation
intensity; however, higher-order bleaching and saturation effects dominate at high powers and
reduce ε. Due to these competing effects ε reaches a peak value εmax that conveys fluorescence
intensity and photostability information. This relies on the fact that photobleaching is dominant
over saturation effects at εmax, which might not be the case for highly photostable chromophores.
The spectral response of εmax has been shown to be highly repeatable for organic dyes used
in the life sciences [16], and the measurement is considerably simpler than TPA cross-section
measurements.

Mütze et al. [17] has reported the spectra of εmax versus excitation wavelength for a wide range
of fluorophores over the tunable range of a Ti:Sapphire laser (approx. 700-1000 nm). As tunable
laser ranges expand, multiphoton signatures should be extended to include previously identified
long-wavelength windows for deep tissue imaging [18,19]. In particular, data presented by Mütze
suggests that many of the commonly used Alexa Fluor dyes may exhibit significant TPE εmax
peaks beyond 1000 nm. Longer wavelengths have been shown to offer deeper imaging capabilities
[19] and significantly reduced photobleaching effects [20]. Increased water absorption can also
be mitigated through strategic selection of excitation wavelengths to access dips in the water
absorption spectrum [21]; for example, Horton et al. optimized three-photon excitation at 1700
nm in part by considering the contribution of water absorption to signal attenuation [22].

Although broader spectra [7] of TPE allow for greater simultaneous fluorophore excitation
than OPE [23], basic filter-based microscopy is generally limited to three or four fluorophores.
Multiplexing is generally undesirable for filter-based microscopy due to channel cross-talk and
the inability to decompose the spectral contributions. Hyperspectral multiplexing overcomes this
limitation by measuring the simultaneous signal of spectrally overlapping dyes on a continuum
of spectral detectors [24–26] and resolving the relative abundances through various unmixing
methods [27–29], albeit with a relative loss in signal-to-noise due to dispersing the emitted
photons into spectral bins. While recent developments utilize several TPE wavelengths to excite
dye panels [9,10], a single TPE wavelength is capable of simultaneously exciting multiple dyes
itself. Single-wavelength OPE multiplexing has been demonstrated by engineering probe mutants
with elongated stokes shifts [30], whereas TPE enables the use of commercially available dyes
for similar results.

Previous demonstrations of single-wavelength TPE hyperspectral multiplexing have multiplexed
intrinsic [31–34] and extrinsic [35,36] fluorophores, achieving simultaneous excitation of up
to four fluorophores with overlapping emission spectra signatures (endmembers). Herein, we
present the peak molecular brightness spectra for eight Alexa Fluor dyes, which are used broadly
in life sciences publications and are already well-characterized with known chemical structure
and spectroscopic properties [37,38]. Using an unmodified commercial microscope, we extend
previous measurements to 1300 nm and revealing distinct TPE peaks past 1000 nm. The
measured spectra were used to predict optimal TPE wavelengths for simultaneous fluorophore
excitation. Additionally, the molecular brightness method was extended to quantitatively predict
wavelength-dependent photobleaching half-life. Tissue phantoms were engineered following
previous reports [19,39] to mimic the effects of excitation light scattering when imaging at depth.
We demonstrate accurate unmixing of six spectrally overlapping fluorophores using a single
excitation wavelength, and also show that longer TPE wavelengths retain higher unmixing fidelity
at depth and with enhanced photostability.
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2. Materials and methods

2.1. Peak molecular brightness measurement

An unmodified commercial microscope (LSM 880, Zeiss) with a nonlinear excitation module
was configured to measure the spectrum of εmax versus wavelength (Fig. 1(a); for additional
details, see Supplement 1 Section A). An InSightX3 DUAL-AX pulse laser was used in the
microscope’s FCS mode to excite dye samples, whose fluorescence was recorded on the 32
channel “Quasar” GaAsP PMT in photon counting mode. Experiments were carried out using a
40x, 1.2 NA water-immersion objective (C-Apochromat 40x/1.20 W Corr M27, Zeiss). For all
nonlinear excitation experiments, the pinhole was opened to the maximum extent possible to
maximize signal. We observed a maximum of 160-200 dark counts per second when using all 32
channels, while signal levels were at least 5-10 kilocounts per second. The dynamic detection
range of the PMT (total range: 400-700 nm) was set to match each dye’s emission signature to
further limit dark counts. FCS autocorrelation curves were calculated with the ZEN 2.3 (Black)
FCS module.

Fig. 1. (a) Setup to use a commercial microscope (Zeiss LSM 880) to measure molecular
brightness of fluorophore dye samples based on fluorescence correlation spectroscopy. Key
microscope components for this experiment are labeled; spectral grating, scanhead not
shown. PMT, photomultiplier tube; AOM, acousto-optic modulator. (b) The molecular
brightness is linearly dependent on the square of the laser power (quadratic dependence)
at low powers, which is eventually dominated by bleaching and saturation effects (*, red
bracket), creating a peak in the molecular brightness (red square).

Eight Alexa Fluor dyes were examined in the present study: Alexa Fluor 488 (A37570,
ThermoFisher; abbreviated, e.g., A488), Alexa Fluor 514 (A30002, ThermoFisher), Alexa
Fluor 532 (1041-1, Fluoroprobes), Alexa Fluor 546 (A20002, ThermoFisher), Alexa Fluor 568
(1081-1, Fluoroprobes), Alexa Fluor 594 (1101-1, Fluoroprobes), Alexa Fluor 610 (A30050,
ThermoFisher), and Alexa Fluor 633 (A20005, ThermoFisher). Dye solutions were prepared in
DI H2O to avoid fluorescence quenching effects from pH buffers [17]. The pH was measured
with an electrode sensor (13-643-133, ThermoFisher) and found to be well within the stable range
specified by the manufacturer (see Supplement 1 Table S1). Dye solutions were prepared between
1-10 nM immediately before measurement; concentrations of each dye were fine-tuned to ensure
adequate emission signal. These concentrations are well below the micromolar threshold at
which aggregates and dimers form for Alexa Fluor dyes [40]. The tunable range of the InSightX3
(680–1000, 1080–1300 nm) was scanned in 10 nm steps, starting at 710 nm to avoid the 400–700
nm detection range of the PMT. The idler beam provided an additional data point at 1045 nm. At
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each wavelength, the laser power was modulated in 15 logarithmically spaced steps. At each
power setting, photons were collected for 45-90 seconds, longer for lower fluorescence intensity.

The molecular brightness ε, while typically described in relation to TPE action cross section
(see Supplement 1 Section B), can be calculated directly from the fluorescence correlation
amplitude G(0), and fluorescence intensity ⟨F(t)⟩ as ε = ⟨F(t)⟩G(0) = ⟨F(t)⟩/NAC, where
NAC = 1/G(0) is the mean number of molecules as determined by the autocorrelation function.
However, to ensure consistency the correlation curve was fit to a standard model for three
dimensional free diffusion [41] using the ZEN FCS software:

G(τ) =
G(0)

(1 + τ/τd)(1 + k−2τ/τd)1/2
(1)

where τd is the diffusion time and k is the form factor (ratio of axial over lateral radius of the focal
volume), although only G(0) was of interest in this study. No triplet state dynamics were included
after analyzing Chi-square fits for simple diffusion and triplet fits, in agreement with similar past
studies [16,17]. After determination of ε, data was analyzed and plotted using Microsoft Excel
and GraphPad Prism.

Laser power throughput and stability was characterized independently as it could not be
simultaneously monitored. The laser power delivered to the sample at maximum power was
measured in 10 nm steps, and the linearity of the acousto-optic modulator was confirmed as
well for the powers described above in steps of 100 nm (see Supplement 1 Fig. S1); both
measurements were made in the sample plane using a power meter (PM100D, Thorlabs) and
compatible power meter sensor (S130C, Thorlabs) with the beam parked in a stationary mode.

2.2. Photobleaching half-life

The photobleaching of six fluorophores (A532, A546, A568, A594, A610, A633) was measured
at 790 nm and 1090 nm excitation at 75 mW average excitation power, in a similar method to
that of Orth and colleagues [42]. First, epithelial cells (NIH:OVCAR5) were prepared as stained
contrast agents. Cells were fixed with 4% paraformaldehyde (19943 1 LT, Affymetrix), quenched
with 0.1 M glycine (G46-500, Fisher) and permeabilized with 0.1% v/v TritonX-100 (BP151-100,
Fisher). Cells were then stained with Alexa Fluor NHS esters in 0.1 M sodium bicarbonate
(25080094, Thermofisher), which bind protein amine groups to stain the cells. Slides were
prepared and imaged continuously in selected positions to measure fluorescence decrease due to
signal. At every frame, a 32-channel spectral image cube (x, y, λ) was obtained with a near-IR
long working distance objective (W Plan-Apochromat 20x/1.0 DIC (UV) VIS-IR M27; Zeiss).

Spectral image cubes were also taken of control slides of cells stained with each fluorophore,
from which dye emission spectra were extracted. All spectral image cubes were linearly unmixed
using a parallelized non-negative least squares algorithm to determine the abundance of each
dye at every pixel. The average signal in each frame was normalized and plotted, and bleaching
half-life was extracted as the frame at which the intensity had decreased by 50%. Independently,
a prediction of the relative half-lives of the six fluorophores at both wavelengths was calculated
from molecular brightness measurements described earlier (see Supplement 1 Section C). The
Pearson’s correlation coefficient was calculated between the predicted and measured relative
half-lives.

2.3. Hyperspectral multiplexing in a tissue phantom

A tissue phantom was created to mimic the effects of scattering and water absorption in TPE
imaging at depth. Cells were prepared as contrast agents as described in the previous section.
Two panels of stains were created; one panel of six single-stain cells (A532, A546, A568, A594,
A610, A633; single-dye panel) and one panel of cells stained with both A546 and A568 at two
different relative concentrations (3:1 A546:A568 and 1:3 A546:A568; mix-dye panel). Two
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tissue phantoms (one for each dye panel) were prepared by mixing low-melt agarose (A9414-10G,
Sigma-Aldrich) at 1.0% v/v in phosphate-buffered saline (10010023, ThermoFisher) to capture
water absorption, 1-µm diameter polystyrene beads (100181, PolyScience) at 2.7 · 109 beads/mL
as scattering agents, and a panel of stained cells at approximately 6 · 106 cells/mL.

Phantom imaging was carried out using the same commercial microscope and laser as described
in the previous section. Lateral 32-channel spectral image cubes (x, y, λ as Z-slices) were obtained
at 2 µm increments from the surface to a depth of 600 µm. Imaging was carried out using TPE
wavelengths of 790 nm and 1090 nm, which were selected from the peak molecular brightness
results, in five randomly selected XY positions in each phantom.

Unmixing was performed as described in the previous section. Unmixing error to signal ratio
was calculated using a custom MATLAB (Mathworks) program (see Supplement 1 Section
D) and plotted versus z-depth to compare the two excitation wavelengths. The data was fit to
δ = bez/a − c, where c and b were shared parameters between the two TPE wavelengths so that
a represented a characteristic attenuation length of δ. Data was analyzed and plotted using
GraphPad Prism for all analysis described herein.

3. Results and discussion

3.1. Peak molecular brightness measurement

Peak molecular brightness has been shown to offer a measurement of spectral fluorescence
activity [16] as a first order approximation of the TPE action spectra. While absolute photon
counts are setup-specific, the relative spectral-shape profile of the spectral response - which
is often sufficient for multiplexed experiment design - is intrinsically robust and reproducible
among different setups (see Supplement 1 Table S2). For this molecular brightness measurement,
the two-photon spectral shape is independent of dye concentration, pulse train characteristics,
wavelength dependent laser transmittance, and detection efficiency. Therefore, the ease of
measurement of the molecular brightness may make it attractive for certain applications. In
contrast, the two-photon cross-section measurement is the gold standard for quantifying the two
photon excitation spectrum in Goeppert-Meyer units.

While a diffusion model was used here to ensure accurate G(0) calculation, these values did not
differ significantly from those directly calculated from the autocorrelation function. Triplet state
dynamics, which necessitate additional fitting terms to accurately calculate G(0), are integral
in photobleaching processes for one-photon excitation. However, TPE FCS does not involve
triplet state dynamics, even at high powers that cause significant photobleaching [43,44]. Adding
triplet terms did not improve the chi-square of the fit significantly, so it was not included (see
Supplement 1 Fig. S2).

We present peak molecular brightness spectra for eight Alexa Fluor dyes (Fig. 2). The brightest
dye, A546, shows a peak εmax value of 19 kilocounts per second per molecule (kcpsm). This
is similar to a reported value of 15.0 kcpsm by Iyer et al. for A546 using a similar setup and
a GaAsP PMT [16]. Iyer reports a 2.3-fold increase by using an APD due to higher quantum
efficiency, which was further improved by Mütze et al. to 58 kcpsm with even more sensitive
equipment [17]. We leave this difference uncorrected as it may inform relative brightness using a
PMT during standard microscopy. The measured peak molecular brightness is not consistent
between experimental setups since it is directly proportional to the photon collection efficiency
and the laser intensity squared. For example, relative signal here is diminished for the redder dyes
(A610, A633) due to the falloff in detection efficiency for GaAsP PMTs versus APDs in this range.
However, spectral variation (i.e. the shape of the curve) of peak molecular brightness is chiefly
of interest and is intrinsically consistent across experimental setups. The overlapping portions
of the spectra shown here with those in Mütze et al. have Pearson’s correlation coefficients
between 0.943 and 0.993 (see Supplement 1 Table S2), demonstrating robust repeatability of this
measurement.
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Fig. 2. Peak two-photon excitation molecular brightness spectra for eight Alexa Fluor dyes
in DI H2O. Data in kilocounts per second per molecule (kcpsm) every 10 nm with a line
added to connect data points.

All eight dyes have two distinct spectral peaks in their lineshapes, which is a common feature
of TPE spectra and has been observed in many other chromophores [23,45,46]. For several dyes
(A546, A568, A594, A610, A633), new peaks past 1000 nm (between 1000-1120 nm) were
revealed, that, to the best of our knowledge, are not currently reported in the literature. For the
other dyes (A488, A514, A532), the secondary peak (between 900-1050 nm) was fully explored
and matches existing literature [17]. A characteristic power squared dependence of intensity was
confirmed for all sixteen peaks(see Supplement 1 Fig. S2 and Supplement 1 Table S3). The
signal is not presented past 1180-1270 nm, depending on the dye, for which insufficient laser
power and cross section inhibited accurate determination of εmax.

3.2. Photobleaching half-life

The ratio of the peak molecular brightness and the TPE action cross-section εmax/σ2η2 has
been shown to predict photostability [17]. With careful measurements of ε in the low laser
power regime, it is possible to calculate σ2η2 [17] (see Supplement 1 Section B). Here, the
relative photostability was predicted by assuming the laser pulse characteristics to be constant
(see Supplement 1 Section C). Using this method, predictions for the relative photobleaching
half-life were made (see Supplement 1 Table S4).

The photobleaching response was independently measured and plotted, from which character-
istic half-lives were extracted. When normalized, these values match closely to the predicted
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values (Fig. 3) with a Pearson’s correlation of ρ = 0.98. Visual inspection shows that relative
half-life trends not only predict wavelength dependent bleaching, but can also predict relative
photostability among different fluorophores. The predicted and measured photobleaching half-
lives at 790 nm versus 1090 nm clearly favor the longer wavelength, which agrees with previous
studies [20]. Additionally, we find that A532 and A546 generally offer greater photostability at
these wavelengths than the other dyes. The accurate prediction of relative bleaching half-life
demonstrates the useful utility of molecular brightness measurements to inform photostability as
well as fluorescence intensity.

Fig. 3. (a) Unmixed images of single-dye panel showing initial intensity (left) and intensity
after 400 frames (right) with 790 nm excitation at 75 mW. (b) A similar depiction repeating
the experiment at 1090 nm. (c) Plots of relative fluorescence intensity versus frame number
(left) show faster bleaching at 790 nm versus 1090 nm. Bleaching half-life, intersection of
curve(s) with dotted line. Predicted relative bleaching half-life from molecular brightness
analysis and measured relative half-life for the various fluorophores and TPE short and
long wavelengths. (d) Predicted half-life correlates well with measured half-life (ρ = 0.98,
P<0.0001).

3.3. Hyperspectral multiplexing in a tissue phantom

We demonstrate simultaneous excitation of six fluorophores (A532, A546, A568, A594, A610,
A633) with both 790 nm and 1090 nm TPE (see Supplement 1 Figs. S4, S5). At zero depth,
these six fluorophores can be isolated using linear unmixing despite a high degree of spectral
overlap. Cells stained with multiple dyes at different staining ratios can also be linearly unmixed
to correctly identify the amount of fluorophore signal in each staining ratio. As depth increases,
visible and identifiable cells become rarer as fluorescent signal becomes weaker. As the unmixing
error to signal ratio δ becomes greater than 1.0 visible cell density falls and the remaining cells
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become harder to correctly identify. The last identifiable cells are found around δ of 1.5 to 2.0
for these phantoms. For both excitation wavelengths, all visible cells can be reliably identified up
to ∼350 µm. Cells may be found and identified between ∼350 – 450 µm, but typically only when
excited at 1090 nm.

The single-dye panel phantom and the mix-dye panel phantom both exhibited expected
behavior of imaging vs depth. Raw image signal decreased exponentially with depth, although
the decrease was sharper than expected due to Mie scattering from the polystyrene beads. A
mean free path (MFP) of 290 µm at 790 nm and 527 µm at 1090 nm was calculated from Mie
theory [47], but signal was extinguished by 600 µm in all cases. This can be attributed to the
additional geometric scattering and absorption of the stained cells, which is not expected to have
a significant wavelength dependence as the objects (cells, 15 µm diameter) are much larger than
the wavelengths of excitation and emitted light. We estimate the contribution of cell scattering
alone to have an MFP of about 400 µm for both wavelengths, resulting in effective MFPs of 170

Fig. 4. (a) Unmixed composite XZ images (log of intensity) of the single-dye panel indicate
improved imaging depth for λex = 1090 nm vs. 790 nm. Scale bar, 50 µm. (b) XY close-ups
of selected cells at depth and at the surface visually show improved unmixing fidelity for
1090 nm at depth while there is no significant difference at the surface. Scale bar, 10 µm.
(c) Unmixing error to signal ratio increases with image depth and reveals a quantitative
advantage of 1090 nm vs. 790 nm for the single-dye panel. Best fit lines are δ = bea/z − c;
a1090>a790, P<0.0001, c and b are equal for both fits. Red × symbols represent point at
which no cells are identifiable. (d-f) Similar results are found for the mix-dye panel, for
which λex = 1090 nm yields improved imaging depth, visually improved unmixing fidelity
of cells at depth and a similar quantitative advantage of 1090 nm vs. 790 nm; a1090>a790,
P<0.0001, c and b are equal for both fits.
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µm and 230 µm for 790 nm and 1090 nm, respectively. These values match much more closely to
what was found experimentally.

Using excitation light at 1090 nm offers a clear advantage over 790 nm, allowing for deeper
imaging depth and lower δ at depth (Fig. 4). For the six single-dye panel phantom, the fit line
δ = bea/z−c found a1090 = 74 µm and a790 = 63 µm (P<0.0001). For the mix-dye panel phantom,
we found a1090 = 152 µm and a790 = 122 µm (P<0.0001). The differences in a between the two
panels are due to the definition of δ; the mix-dye panel only has two possible ground truth cell
types, while the single-dye panel has six. This increases unmixing error for the single-dye panel
vs. the mix-dye panel, so while the a parameter is somewhat arbitrary, it is still useful to compare
excitation wavelengths within a panel.

4. Conclusion

The peak molecular brightness spectra of two-photon excited probes have been determined by
FCS using a commercial microscope. Eight Alexa Fluor dyes have been measured in the tunable
range of an InSightX3 laser (700-1300 nm), extending past the usual Ti:Sapphire range. These
spectra revealed two distinct peaks for each fluorophore; one between 700-900 nm and one
between 900-1200 nm. Using peak molecular brightness as a first-order surrogate for two-photon
action spectra, one wavelength was selected to excite each peak simultaneously (790 nm and
1090 nm) and hyperspectral unmixing of six probes with overlapping emission spectra. The
photostability was predicted from molecular brightness analysis at these wavelengths for six
probes, predicting better photostability at 1090 nm than 790 nm. This was confirmed by direct
measurement of photobleaching half-life for these parameters. Simultaneous probe excitation and
linear unmixing was demonstrated for six fluorophores in a tissue phantom. Using stained cells
as contrast agents, the unmixing fidelity was calculated and plotted vs. depth, revealing that 1090
nm excitation performs offers lower unmixing error at depth than 790 nm. These results offer a
guide for wavelength and fluorophore selection for multiplexed two-photon imaging applications.
Funding. Richard and Susan Smith Family Foundation (Smith Family Award); National Institutes of Health (K22
CA181611, R01 CA226855).

Acknowledgments. We thank Robert S. Knox and Chris Xu for preliminary critical discussions regarding single-
wavelength multiplexed TPE that encouraged this work. We also thank Guoxin Wong and the Institute for Chemical
Imaging of Living Systems at Northeastern University for consultation and imaging support.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data used to produce the images and graphs in this paper are not publicly hosted for download
due to large file sizes but may be obtained from the authors upon reasonable request.

Supplemental document. See Supplement 1 for supporting content.

References
1. P. T. So, E. Y. Yew, and C. Rowlands, “High-throughput nonlinear optical microscopy,” Biophys. J. 105(12),

2641–2654 (2013).
2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat.

Biotechnol. 21(11), 1369–1377 (2003).
3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951),

73–76 (1990).
4. C. Ash, M. Dubec, K. Donne, and T. Bashford, “Effect of wavelength and beam width on penetration in light-tissue

interaction using computational methods,” Lasers Med. Sci. 32(8), 1909–1918 (2017).
5. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol.

4(11), 710–711 (2009).
6. N. S. Makarov, M. Drobizhev, G. Wicks, E. A. Makarova, E. A. Lukyanets, and A. Rebane, “Alternative selection

rules for one- and two-photon transitions in tribenzotetraazachlorin: Quasi-centrosymmetrical π-conjugation pathway
of formally non-centrosymmetrical molecule,” J. Chem. Phys. 138(21), 214314 (2013).

7. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data
from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481 (1996).

https://doi.org/10.6084/m9.figshare.16437033
https://doi.org/10.1016/j.bpj.2013.08.051
https://doi.org/10.1038/nbt899
https://doi.org/10.1038/nbt899
https://doi.org/10.1126/science.2321027
https://doi.org/10.1007/s10103-017-2317-4
https://doi.org/10.1038/nnano.2009.326
https://doi.org/10.1063/1.4807594
https://doi.org/10.1364/JOSAB.13.000481


Research Article Vol. 12, No. 9 / 1 Sep 2021 / Biomedical Optics Express 5918

8. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral
windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U. S. A. 93(20), 10763–10768 (1996).

9. A. J. Bares, M. A. Mejooli, M. A. Pender, S. A. Leddon, S. Tilley, K. Lin, J. Dong, M. Kim, D. J. Fowell, N.
Nishimura, and C. B. Schaffer, “Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally
overlapped fluorescent labels,” Optica 7(11), 1587 (2020).

10. P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E.
Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).

11. C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,”
Bioimaging 4(3), 198–207 (1996).

12. F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H.
Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.
208(2), 108–115 (2002).

13. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation
wavelength range,” Opt. Express 16(6), 4029 (2008).

14. K. G. Heinze, A. Koltermann, and P. Schwille, “Simultaneous two-photon excitation of distinct labels for dual-color
fluorescence crosscorrelation analysis,” Proc. Natl. Acad. Sci. U. S. A. 97(19), 10377–10382 (2000).

15. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble
quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).

16. V. Iyer, M. J. Rossow, and M. N. Waxham, “Peak two-photon molecular brightness of fluorophores is a robust
measure of quantum efficiency and photostability,” J. Opt. Soc. Am. B 23(7), 1420 (2006).

17. J. Mütze, V. Iyer, J. J. MacKlin, J. Colonell, B. Karsh, Z. Petrášek, P. Schwille, L. L. Looger, L. D. Lavis, and T. D.
Harris, “Excitation spectra and brightness optimization of two-photon excited probes,” Biophys. J. 102(4), 934–944
(2012).

18. J. P. Ritz, A. Roggan, C. Isbert, G. Mller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated
porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001).

19. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy
using longer wavelength excitation,” Opt. Express 17(16), 13354 (2009).

20. V. Andresen, S. Alexander, W. M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton
microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).

21. K. Jansen, M. Wu, A. F. Van der Steen, and G. Van Soest, “Photoacoustic imaging of human coronary atherosclerosis
in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).

22. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon
microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).

23. M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K.
Fujitaa, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt.
20(10), 1 (2015).

24. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral Imaging: A Novel
Approach for Microscopic Analysis,” Cytometry 43(4), 239–247 (2001).

25. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
26. L. Gao and R. T. Smith, “Optical hyperspectral imaging in microscopy and spectroscopy - A review of data

acquisition,” J. Biophotonics 8(6), 441–456 (2015).
27. N. Keshava, “A Survey of Spectral Unmixing Algorithms,” Lincoln Laboratory Journal 14, 55–78 (2003).
28. F. Cutrale, V. Trivedi, L. A. Trinh, C. L. Chiu, J. M. Choi, M. S. Artiga, and S. E. Fraser, “Hyperspectral phasor

analysis enables multiplexed 5D in vivo imaging,” Nat. Methods 14(2), 149–152 (2017).
29. E. M. Kercher, J. Tatz, A. Palanisami, Q. Fang, and B. Q. Spring, “Video-rate hyperspectral unmixing for multiplexed

molecular microscopy and microendoscopy,” Scientific Reports (to be published).
30. A. M. Bittel, A. M. Davis, L. Wang, M. A. Nederlof, J. O. Escobedo, R. M. Strongin, and S. L. Gibbs, “Varied Length

Stokes Shift BODIPY-Based Fluorophores for Multicolor Microscopy,” Sci. Rep. 8(1), 4590–4612 (2018).
31. A. J. Radosevich, M. B. Bouchard, S. A. Burgess, R. Stolper, B. Chen, and E. M. Hillman, “Hyperspectral in vivo

two-photon microscopy of intrinsic contrast,” Opt. Lett. 33(18), 2164–2166 (2008).
32. L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman, “Spectral characterization and unmixing

of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS
One 6(5), e19925 (2011).

33. Y. Liu, H. Tu, S. You, E. J. Chaney, M. Marjanovic, and S. A. Boppart, “Label-free molecular profiling for
identification of biomarkers in carcinogenesis using multimodal multiphoton imaging,” Quant. Imaging Medicine
Surg. 9(5), 742 (2019).

34. S. You, R. Barkalifa, E. J. Chaney, H. Tu, J. Park, J. E. Sorrells, Y. Sun, Y. Z. Liu, L. Yang, D. Z. Chen, M. Marjanovic,
S. Sinha, and S. A. Boppart, “Label-free visualization and characterization of extracellular vesicles in breast cancer,”
Proc. Natl. Acad. Sci. U. S. A. 116(48), 24012–24018 (2019).

35. S.-Y. Chen, C.-S. Lu, and C.-H. Yeh, “Non-de-scanned parallel recording two-photon hyperspectral microscopy with
high spectral and spatial resolution,” Biomed. Opt. Express 5(2), 338 (2014).

36. F. Deng, C. Ding, J. C. Martin, N. M. Scarborough, Z. Song, G. S. Eakins, and G. J. Simpson, “Spatial-spectral
multiplexing for hyperspectral multiphoton fluorescence imaging,” Opt. Express 25(26), 32243 (2017).

https://doi.org/10.1073/pnas.93.20.10763
https://doi.org/10.1364/OPTICA.389982
https://doi.org/10.1038/nmeth.2098
https://doi.org/10.1002/1361-6374(199609)4:3<198::AID-BIO10>3.0.CO;2-X
https://doi.org/10.1046/j.1365-2818.2002.01074.x
https://doi.org/10.1364/OE.16.004029
https://doi.org/10.1073/pnas.180317197
https://doi.org/10.1126/science.1083780
https://doi.org/10.1364/JOSAB.23.001420
https://doi.org/10.1016/j.bpj.2011.12.056
https://doi.org/10.1002/lsm.1134
https://doi.org/10.1364/OE.17.013354
https://doi.org/10.1016/j.copbio.2009.02.008
https://doi.org/10.1016/j.pacs.2013.11.003
https://doi.org/10.1038/nphoton.2012.336
https://doi.org/10.1117/1.JBO.20.10.101202
https://doi.org/10.1002/1097-0320(20010401)43:4<239::AID-CYTO1056>3.0.CO;2-Z
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.1002/jbio.201400051
https://doi.org/10.1038/nmeth.4134
https://doi.org/10.1038/s41598-018-22892-8
https://doi.org/10.1364/OL.33.002164
https://doi.org/10.1371/journal.pone.0019925
https://doi.org/10.1371/journal.pone.0019925
https://doi.org/10.21037/qims.2019.04.16
https://doi.org/10.21037/qims.2019.04.16
https://doi.org/10.1073/pnas.1909243116
https://doi.org/10.1364/BOE.5.000338
https://doi.org/10.1364/OE.25.032243


Research Article Vol. 12, No. 9 / 1 Sep 2021 / Biomedical Optics Express 5919

37. N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P.
Haugland, “Alexa Dyes, a Series of New Fluorescent Dyes that Yield Exceptionally Bright, Photostable Conjugates,”
J. Histochem. Cytochem. 47(9), 1179–1188 (1999).

38. R. W. Sabnis, Alexa Fluor Dyes (John Wiley & Sons, Ltd, 2015), chap. 7-12, pp. 20–34.
39. N. J. Durr, C. T. Weisspfennig, B. A. Holfeld, and A. Ben-Yakar, “Maximum imaging depth of two-photon

autofluorescence microscopy in epithelial tissues,” J. Biomed. Opt. 16(2), 026008 (2011).
40. C. K. Johnson and M. Levitus, Spectroscopy and dynamics of single molecules: Methods and applications (Elsevier,

2019), chap. 1.6.1 Rhodamines and carborhodamines.
41. J. Mütze, T. Ohrt, and P. Schwille, “Fluorescence correlation spectroscopy in vivo,” Laser Photonics Rev. 5(1), 52–67

(2011).
42. A. Orth, R. N. Ghosh, E. R. Wilson, T. Doughney, H. Brown, P. Reineck, J. G. Thompson, and B. C. Gibson,

“Super-multiplexed fluorescence microscopy via photostability contrast,” Biomed. Opt. Express 9(7), 2943 (2018).
43. P. Dittrich and P. S. Schwille, “Photobleaching and stabilization of fluorophores used for single-molecule analysis

with one-and two-photon excitation,” Appl. Phys. B 73(8), 829–837 (2001).
44. Z. Petrmšek and P. Schwille, “Photobleaching in Two-Photon Scanning Fluorescence Correlation Spectroscopy,”

ChemPhysChem 9(1), 147–158 (2008).
45. M. Drobizhev, N. S. Makarov, T. Hughes, and A. Rebane, “Resonance enhancement of two-photon absorption in

fluorescent proteins,” J. Phys. Chem. B 111(50), 14051–14054 (2007).
46. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of

fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
47. C. Mätzler, MATLAB Functions for Mie Scattering and Absorption, Institut fur Angewandte Physik: University of

Bern (2006).

https://doi.org/10.1177/002215549904700910
https://doi.org/10.1117/1.3548646
https://doi.org/10.1002/lpor.200910041
https://doi.org/10.1364/BOE.9.002943
https://doi.org/10.1007/s003400100737
https://doi.org/10.1002/cphc.200700579
https://doi.org/10.1021/jp075879k
https://doi.org/10.1038/nmeth.1596

